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y-Lithiopropylnaphthalenes and their oxa- and aza-tethered analogues cyclize by nucleophilic addition of the organolithium to the naphthalene
ring. The resulting benzyllithiums react stereoselectively with electrophiles to give dearomatized tricyclic products with structural similarity to

the arylnaphthalene lignans.

The cyclization of hexenyllithium8 and their oxa and aza
analogues to give cyclopentarfesetrahydrofurans, and

6 — 8) would provide valuable 6,5-fused ring systems, but
despite a number of isolated reports in the literafune,

pyrrolidine$ 7 is now an established alternative to radical general method exists for this type of cyclizatfowe have
chemistry for the synthesis of five-membered rings (Scheme previously shown that similar cyclizations are possible when
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amide groups stabilize both starting and product organo-
lithiums € In this paper, we report that the anionic cyclization
of unstabilized lithioalkylnaphthalenes and their oxa and aza
analogues allows the dearomatizing annelation of a cyclo-
pentane, tetrahydrofuran, or pyrrolidine ring to a naphthalene
nucleus.

Scheme 1. Anionic Cyclization
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Naphthalene itself reacts with organolithiums at the
2-position, but rearomatization of the organolithium adduct
to give 2-alkylnaphthalenes is unavoidabl&o establish
whether an intramolecular version of this reaction was
feasible, we treated 2+iodopropyl)naphthalen® with
t-BuLi in pentane/ethéet.Addition of TMEDA promoted
cyclization on warming to room temperat@igScheme 2).

Scheme 2. Naphthalene Cyclization and Rearrangem%nts
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a(i) (9) t-BuLi, pentane-Et,0, —78 °C; (ii) (10) MeLi, THF,
TMEDA, —78°C; (iii) TMEDA, —78— 20°C; (iv) NH.CI; (v) 2
h, =78 °C; (vi) —78 — 20 °C.

Cyclized but rearomatized compouid@ was obtained in

good yield, and we were unable to trap a dearomatized

organolithium by alkylation. Nonetheless, the reaction rep-
resents a rare example of anionic cyclization of an unfunc-
tionalized organolithium onto an aromatic ritfy.

Attempted cyclization of the oxa analogig, formed by
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[2,3]-Wittig rearrangemenit. Unstable dearomatized com-
pound 14 was isolated on quenching the reaction-at8
°C. Warming the solution to room temperature before
guenching led to rearomatization to git8 (Scheme 2).

To increase the electrophilicity of the naphthalene ring,
we decided to incorporate an electron-withdrawing group into
the 1-position. Electron-deficient naphthalenes readily un-
dergo nucleophilic addition to give dearomatized proddicts.
Having in mind its track record in the intermolecular version
of this reaction;? we chose the oxazoline group as the
electron-withdrawing substituent.

Treating oxazolinel 6 with MeLi/TMEDA gave organo-
lithium 17 which cyclized even at-78 °C (Scheme 3).

Scheme 3. Dearomatizing Annelation of a Tetrahydrofu?an
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a(i) MeLi, THF, TMEDA, —78 °C; (i) —78 °C, 1 h; (iii)
electrophile E (see Table 1);-78 °C.

Trapping 18 with alkylating agents and other electrophiles
yielded19in good yield (Table 1}° The product49, which

Table 1. Cyclization of16

entry E* E= yield (%) 19a:19ba
1 NH.CI H 74 >25:1
2 Mel Me 79 >25:1
3 BnBr Bn 75 3:1
4 PhCHO PhCHOH 41b >25:1¢

aRatio determined byH NMR. ° Yield of major epimer¢ 3:2 ratio at
hydroxyl-bearing center.

contain the 6,6,5-ring system present in several of the
important biologically active arylnaphthalene ligndhsre
acid-sensitive compounds, unstable in CR@hough they
survive several days in benzene at room temperature.

In most cases the cyclizatietelectrophilic quench se-
qguence gave a single diastereoisomer {bly NMR) on
protonation or methylation. A large coupling € 15 Hz)

(11) Nakai, T.; Mikami, K.Org. React.1994,46, 105. For comparable
[2,3]-Wittig rearrangements involving aromatic double bonds, see: To-
mooka, K.; Harada, M.; Haniji, T.; Nakai, Chem. Lett2000, 1394. Garbi,

A.; Allain, L.; Chokrki, F.; Crousse, B.; Bonnet-Delpon, D.; Nakai, T.;
Bégué, J.-POrg. Lett.2001,3, 2529.
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between protons at the saturated carbons of the dearomatiz<|ij | | N N N

ring of protonated product9a (E = H) suggests that they 1 pe 2. Cyclization of22
lie trans and hence indicategndo-protonation of18.

Alkylation with Mel gave a single diastereoisomer of the _&Mtry EY E= yield (%)  25a:25b°
product, while benzyl bromide gave an inseparable 3:1 1 NH,CI H 73 >25:1
mixture of diastereoisomers. Benzaldehyde reacted diastereo- 2 Mel Me 71 >25:1
selectively at the new stereogenic center in the ring but gave 3 BnBr Bn 13° >25:1
a 3:2 mixture of epimers at the new hydroxyl-bearing center allyl-Br CH,CH=CH, 57 =251
PhCHO  PhCHOH 80 >25:1¢

of alcohol19a (E = PhCHOH).
The stereochemistry of the alkylated products was assigned, °Ratio determined byH NMR; stereochemistry by analogy witt.

by NOE of21. a derivative oﬂ_9a(E _ Me) The oxazoline Low yield due to quaternizatiors.3:2 ratio at hydroxyl-bearing center.

ring of 19a (E = Me) was reduced to a hydroxyl group

via aldehyde?0, and treatment with acid gave the acethl The diastereoselectivity of the cyclization and alkylation
Clear NOEs (Scheme 4) in this tetracycle indicateutio to give 25awas even higher than in the formationiffa. A
stereoselectivity in the alkylation df8. single diasterecisomer was obtained in every case (though

again benzaldehyde gave a 3:2 mixture of epimers at the
hydroxyl-bearing center). No rearomatized products were
obtained on cyclization 016 or 22.

Products resulting from annelating a cyclopentane ring to
a naphthalene skeleton were obtained by iodiitGium

(ii) O@ exchange oP6 (Scheme 6)t-BuLi in THF at —78 °C gave
e O

Scheme 4. Transformations and Stereochemistry

OMe
OMe OMe Scheme 6. Dearomatizing Annelation of a Cyclopenténe
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a(i) (1) MeOTf, (2) NaBH, (3) (CO:H),; (ii) (1) NaBHa, (2) 06 OMe o5 OMe
CRCOH.
;\ o}
Variation of the organolithium “tether” allowed us to (i >
annelate other saturated five-membered rings to the naph- O" OO’
thalene system. For example, although the amino-substituted OMe

stannan&2 proved more resistant to tin—lithium exchange 30

than16, warming to—40 °C with MeLi and TMEDA led to ap . . o R .

. L . t-BuLi (2.1 , THF,—78 °C; —78°C, 1 h;
the formation of23. Cyclization t024 occurred at this e|eC(tI20phil|Je IE( (seee qTLg\é?e 3)-78— 20 og'_) ()
temperature, ang4d was trapped with electrophiles (Scheme
5 and Table 2) to yield tricyclic aminezb.

27, which cyclized to giv8 and resulted in good yields of
single diastereoisomers (in most cases, to the limit of NMR
detection) on reaction with electrophiles (Table'3).

Scheme 5. Dearomatizing Annelation of a Pyrrolidiﬁe

Table 3. Cyclization of26
SnBu3 (" + — : 0 . a
entry E E yield (%) 29a:29b
1 NH4CI H 85 >25:1
OMe

OMe OMe .
22 23 2 Mel Me 71 <1:25
O 3 BnBr Bn 65 <1:25
4 allyl-Br CH,CH=CH> 67 1:1
(i O‘ gt 5 PhCHO  PhCHOH 45p <1:25¢
aRatio by H NMR. ? Yield of major epimer¢ 3:1 ratio at hydroxyl-
OMe OMe bearing center.
25a 25b

a(i) MeLi, THF, TMEDA, —40 °C; (ii) —40 °C, 1 h; (iii )
elec(tZOphile E (see Table 2)-78 °C. ® i Oxazoline29b (E = Bn) was reduced to aldehydzl

(Scheme 7). Further reduction and hydrolysis of the enol
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Scheme 7. Transformations and Stereochemistry Scheme 9. Starting Materials and Targéts
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: i) 32b 19%
X-ray crystal - : MeQ OMe
structure of 32b . 40 OMe

[most H atoms omitted for clarity] o a (i) BuLi, Et,0, —78°C; (ii) oxetane, BE; (iii) (1) Me,NCHO,
(2) NaBH,.

() (1) MeOTf, (2) NaBH, (3) (COH); (i) (1) NaBH,, (2)
CRCOM. phyllotoxin 40.1¢ We are currently investigating applications
of dearomatizing cyclizations of this type to the synthesis
ether gave, in contrast with aldehy2@ the hydroxyketones  oOf this class of compounds.
32a and 32b (epimerso to the ketone) with no acetal
analogous t®1. An X-ray crystal structure d32b proved
that28, in contrast withl8, is alkylated from thexoface?!®
Alternative carboxylic acid derived electron-withdrawing
groups performed less well in the cyclization reactions. For
example, théN,N-diisopropylamide33 gave an organolithium
that cyclized in poor yield to give an amide enolate that could
be protonated though not alkylated (Scheme 8).
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